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A Theory of Stimulus Discrimination Learning 

RICHARD C. ATKINSON 

University of California, Los Angeles 

1. Introduction 

This paper presents a theory of discrimination learning. For simplicity, 
the analysis will be restricted to situations in which only one of two stimuli 
is presented on each trial; the subject's task is to learn to respond appro­
priately to them. However, the theory can be readily generalized to situa­
tions involving more than two stimuli. 

There are several recent quantitative theories dealing with this type of 
problem; in particular, the work of Bush and Mosteller [4), Restle [15, 16, 
17], Burke and Estes [3], Green [11), Atkinson [1], and Estes [6, 7]. Each of 
these theories has certain limitations. The limitations are of two types. In 
some cases the conceptual framework on which the theory is based seems 
unrealistic from a psychological viewpoint. In other cases, the theories ap­
pear to be contradicted by experimental data or are extremely restrictive in 
the type of problem to which they are applicable. An analysis of these 
theories will not be presented (see Restle [18] and Estes [7)) but later some 
predictions derived from our model and comparable results from other 
theories will be examined. 

The experimental situation involves a series of discrete trials. On each 
trial one of two stimuli CS1 or S2) is presented. To the presentation of s,, 
the subject makes one of two responses CA1 or A2); these responses are 
mutually exclusive and exhaustive. A trial is terminated by a reinforcing 
event CE1 or £2). If an E1 occurs the A1 response has been reinforced, and 
if an E2 occurs the A2 response has been reinforced. 

Thus the experimenter can present one of the following four combinations 
on each trial: CS1, £1), CS1, £2), CS2, £1), or CS2, £2). The respective probabili­
ties of these four events will be a, b, c, and d, where a+ b + c + d = 1. 
More general schedules of reinforcing events and stimulus events can be 
investigated but the above schedule encompasses most of the experimental 
research on discrimination learning. The traditional type of discrimination 
task is described when a= d = 1/2 and b = c = 0; the subject must learn to 
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222 RICHARD C. ATKINSON 

make the AI response to the presentation of SI and to make the A2 response 
to the presentation of S2. Another type of discrimination problem only re­
cently investigated is specified when a, b, c, d * 0 [2], [6], [8], [9], [14]. 

Three additional parameters are frequently used to avoid cumbrous nota­
tion: rri = aj(a + b), rr2 = c/(c + d), and [j = a + b. The parameter rri is the 
probability of an EI event given SI, the parameter rr2 is the probability of 
an EI event given S2, and [j is the probability of an S1 presentation. 

The aim of the present model is to account for the following factors in 
discrimination learning: 

(i) The effect of stimulus dimensions; specifically, the variable of stimu­
lus similarity or differentiability; 

(ii) The effect of reinforcement schedules; the influence of rri and rr2; 
(iii) The effect of stimulus schedules; that is, the influence of variations 

in [j; 
(iv) Previous experience on other discrimination tasks. 

Other variables influencing discrimination learning have been experimentally 
investigated, but for the moment we shall be more than happy to limit our 
attention to the above factors. 

The dependent variable of major interest is the expected probability on 
trial n of an A, response to the presentation of an S1 stimulus. This proba­
bility will be denoted as Pn(At I SJ). 

The model is similar in some respects to the theories mentioned above. 
All of these theories conceptually represent the S, stimulus as a collection 
of component parts; the hypothetical components are called stimulus ele­
ments or cues. Thus, the stimuli S1 and S2 are represented by two sets of 
elements, and similarity between the stimuli is defined with respect to the 
number of elements the two sets have in common. Some theorists have 
proposed that individual elements are conditioned to responses; these theories 
will be referred to as component models. Others, notably Estes [7], have 
proposed that patterns of stimulus elements are conditioned to responses. 

The problem encountered by both types of theories is illustrated by the 
observation that subjects can learn to discriminate with perfect accuracy 
between stimuli having so many features in common that initially there is 
marked generalization among them. To account for this result the com­
ponent theories have had to postulate some mechanism by which the com­
mon stimulus elements gradually become ineffective or, to use Restle's ter­
minology, become "adapted and rendered nonfunctional during learning." 
The mechanisms that have been proposed lack psychological rationale and 
tend to be applicable to extremely restricted schedules of reinforcement. 
The pattern model is not subject to these objections and has no difficulty 
accounting for the above observation. Unhappily, however, it implies that 
the rate of discrimination learning is independent of the number of common 
stimulus elements. This prediction seems contrary to most experimental 
evidence. 

In our model, both conditioning concepts are employed. Further, a mecha­
nism is postulated that integrates the two types of conditioning. The con-
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trol of the integrating mechanism is governed by the reinforcing schedule 
and stimulus similarity of the particular discrimination task. 

THEORY 
2. Stimulus Representation 

Stimuli impinging on the organism are to be represented conceptually in 
terms of a set S* of stimulus elements. The presentation of a particular 
stimulus leads to the activation of a unique subset of S* with probability 
1. Further, as will be indicated later, the response elicited by the stimulus 
is a function of the activated stimulus elements. These stimulus elements 
are theoretical constructs to which we will assign certain properties. They 
are not the receptor neurons of neurophysiology but a schematic representa­
tion of the physical stimulus, having certain simple and uniform properties. 

For our problem, 1;he total stimulus situation associated with the presenta­
tion of S1 and the total stimulus situation associated with the presentation 
of s. are represented by two subsets of stimulus elements St and S2, re· 
spectively; the presentation of s, (i = 1, 2) leads to the activation of set s,_ 
For different pairs of physical stimuli the sets S 1 and s. may be of differept 
sizes and have different relationships. That is, S 1 and S2 may be disjoint, 
partially overlapping, or one may be a subset of the other. 

A set s. is defined that represents those stimulus elements common to S1 
and s. (i.e., Sa= Sr n S2). Typically, two sources of common elements are 
identified in a discrimination problem. One subset of common elements may 
be associated with the actual stimuli to be discriminated; the other may be 
associated with background stimuli such as characteristics of the experi­
mental chamber, sounds from the apparatus, proprioceptive stimulation, and 
so forth. 

Let n(Sr), n(S2), and n(Sa) represent the number of elements in St, s., and 
Sa, respectively. Then 

(1) n(St) - n(Sa) 
Wt = n(St) ' 

n(S.) - n(Sa) 
w. = n(S.) 

The quantities Wt and w. can be used to define indexes of similarity between 
the stimuli S1 and S2 similar to those introduced by Bush and Mosteller [4]. 
Roughly speaking, the more dissimilar the stimuli the closer Wt and w. are 
to unity; as similarity increases wr and w. approach zero. 

For many experimental situations the stimuli Sr and s. are es;;entially 
comparable (see, for example, [2)) and, consequently, it is natural to assume 
that Wt = w. = w; hence, when the subscript on w is omitted the reader 
should assume that Wt = w2. 

One additional restriction is imposed; namely, 0 < Wt ~ 1 and 0 ~ w2 ~ 1. 
That is, the case where wr = w2 = 0 will not be considered. This would 
describe a situation in which the same stimulus (represented by Sa) is pre­
sented on all trials of the experiment. The case is considered in detail by 
Suppes and Atkinson [19) for models of the type to be presented in this 
paper. 
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3. Conditioning States 

With regard to conditioning, we distinguish between individual stimulus 
elements and stimulus patterns. A stimulus pattern refers to a subset of 
stimulus elements all of which are activated simultaneously; on a given 
trial, only one stimulus pattern can be activated. Two conditioning relations 
are defined: (i) on trial n, each stimulus element is conditioned to either A1 

or A,; (ii) on trial n, each stimulus pattern is conditioned to either A 1 

or A2. 

To clarify, consider a set S* with only three stimulus elements s1, s2, and 
S3. There are seven possible stimulus patterns: (s1), (s2), (s3), (s1, s2), (s1, s3), 
(s2, s3), and (s1, s2, s3). If the stimulus impinging on the subject is such that 
the elements St, s2, and S3 are activated simultaneously, then the only pat­
tern activated is (St, s,, s3); patterns (s1, s3) and (s2, s3) are not activated. 
Under the most general experimental conditions we might assume that any 
set of conditioning relations is possible; as an example, to be referred to 
again, the following states might hold on trial n for individual elements 
and for the stimulus patterns: 

(2) 
St-A2, s2-A1, s3-A~o (s~)-At , 

(s2)-A2, (s3)-A2, (St, s2)-A1 , 

(s~o s3)-A2, (s2, s3)-A~o (s~o s2, s3)-A2 . 

In the riext two sections we consider how these conditioning relations de­
termine responses and how they are established. 

4. Response Probability and Perceptual States 

The response made by a subject on a given trial depends on the condi' 
tioning states of the activated stimulus elements. However, the response 
can be determined either by the stimulus pattern or by the individual stimu­
lus elements. Specifically, 

(P) The subject can respond in terms of the activated stimulus pattern 
and make the At response to which the activated stimulus pattern 
is conditioned; 

(C) The subject can respond to the component stimulus elements such 
that the probability of an At response is the proportion of activated 
stimulus elements conditioned to A1. 

If the response is determined on trial n by the stimulus pattern, then we 
will say that the subject is in state P on trial n; if the response is deter­
mined by the component stimulus elements, then the subject is in state C. 
These two states will be referred to collectively as perceptual states. 

In (2), if the stimulus elements St, s2, and S3 are activated simultaneous­
ly, then (i) an A2 will be elicited if the subject is in perceptual state P, 
and (ii) an A1 will be elicited with probability 2/3 if the subject is in state 
C. However, if only s1 is activated, then (i) an A 1 will be made if the sub­
ject is in state P, and (ii) an A2 will occur if the subject is in state C. 
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Whether a subject is in the P or C state at the start of trial n depends 
on his reinforcement history. If the sequence of At responses made by the 
subject has been consistently reinforced when the subject was in the P state, 
then he will remain in state P; if the At responses have been consistently 
reinforced when the subject was in the C state, then he will remain in state 
C. If partial reinforcement has occurred when the subject was in either P 
or C, then in the future the subject will be in state P or C with some 
probability other than 0 or 1. 

5. Conditioning Process 

To be explicit, in discussing conditioning we introduce the notion of a 
random variable. The formal application of random variables could have 
been made in describing other features of the model, but until now it would 
not have facilitated the presentation. We remind the reader that a random 
variable is a (measurable) function defined on a sample space, and the over-all 
probability measure on the sample space induces a probability distribution 
on the values of the random variable. 

The sample space X for a given experiment is the set of all possible out­
comes x of the experiment. It is suggestive to think of x as the sequence 
of stimulus, response, and reinforcing events for a particular subject in the 
experiment, but it is important to remember that when in defining the 
random variable we speak of subject x, we mean the subject's protocol in 
a particular realization of the experiment. The same subject would un­
doubtedly produce a different experimental outcome x in another realization 
of the experiment at another time. 

The random variable Fn(x) describes changes in conditioning and perceptual 
states as a function of reinforcement schedules. Specifically, the condition­
ing random variable is defined in terms of the following statements: 

(i) All activated stimulus elements and the activated stimulus pattern 
are conditioned to the reinforced response. That is, if E1 occurs on trial n, 
then the stimulus elements and the stimulus pattern activated on the trial 
are conditioned to A 1• 

(i') No change occurs in the conditioning state of stimulus elements or 
stimulus patterns on trial n. 

(ii) If the subject is in perceptual state P and the A; response made is 
reinforced, then the subject will remain in state P; however, if the alternative 
response is reinforced, then the subject will change to state C. Similarly, 
for the C state, if the response emitted is reinforced the subject remains 
in C, but he switches to P if the A 1 response was not reinforced. 

(ii') No change occurs in the perceptual state on trial n. 
Then 

(3) 

\

3 if (i) and (ii) apply , 

2 if (i) and (ii') apply , 
Fn(x) = 1 if (i') and (ii) apply , 

0 if (i') and (ii') apply . 
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Only three cases will be considered in this paper. 

Case 1: 
(4) P(F,. = 3) = 0, P(F,. = 2) = P(F,. = 1) = 0, 

P(F,. = 0) = (1 - 0) (0 < 0 ;$; 1) . 

Case II: 

(5) P(F,. = 3) = ata2, P(Fn = 2) = (1 - at)a2, P(F,. = 1) = at(1 - az), 

P(F,. = 0) = (1 - at)(1 - a2) (0 < at, a2 ;$; 1) . 

Case III: 

(6) P(F,. = 3) = rs, P(F,. = 2) = r2, P(F,. = 1) = Tt, P(F,. = 0) =To. 

6. Subject States 

At the start of trial n, it is assumed that a subject can be described by 
an ordered four-tuple in which 

(i) The first member of the tuple is either P or C and indicates the per­
ceptual state on trial n. 

(ii) The second member is either At or A2. If it is At (i = 1, 2), then the 
individual stimulus elements in the subset St,..., s. are conditioned to Ac and 
the stimulus pattern associated with the entire subset St is conditioned 
to At. 

(iii) The third member is either At or A2 and indicates whether the in­
dividual elements in s. are conditioned to At or A2. 

(iv) The fourth member is either At or A2. If it is At (i = 1, 2), then the 
individual stimulus elements in the subset S2 ,..., s. are conditioned to At and 
the stimulus pattern associated with the entire subset S2 is conditioned 
to At. 

Thus, following the rules for response probability, we find that if the sub­
ject is in state (C, At, A2, A2), then the probability of an At response is Wt 
in the presence of St and 0 in the presence of S2. As a second example, 
for the state (P, At, A2, At) the probability of an At response is 1 in the 
presence of both St and S2. 

These four-tuples will be referred to as subject states and assigned identi­
fying numbers as follows: 

1. (P, At, At, At) 9. (C, Ar, Ar, Ar) 

2. (P, Ar, Ar, A2) 10. (C, Ar, Ar, A2) 

3. (P, Ar, A2, At) 11. (C, At, A2, Ar) 

4. (P, Ar, A2, A2) 12. (C, Ar, A2, A2) 

5. (P, A2, Ar, Ar) 13. (C, A2, Ar, Ar) 

6. (P, A2, Ar, A2) 14. (C, A2, Ar, Az) 

7. (P, A2, A2, Ar) 15. (C, A2, A2, At) 

8. (P, Az, A2, A2) 16. (C, A2, A2, A2) 

The subject state description permits response distributions to be specified 
in a fairly simple fashion. One reason for being able to restrict the number 
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of states to sixteen is that, by assumption, if conditioning has occurred on 
a trial (i.e., if Fn(x) = 3, 2) in which S1 (j = 1, 2) was presented, then on all 
subsequent trials the stimulus pattern associated with 81 and the individual 
stimulus elements in the subset 81,.., 8. will both be conditioned to the same 
response. Thus it is not necessary to keep track separately of the stimulus 
pattern for 8} and the individual elements in the subset 8} ,_ 8., as indicated 
in the description of the second and fourth components of a subject state. 
The only complication is with regard to initial conditions, where we might 
wish to admit the possibility that the pattern associated with 8} and the 
elements in the subset 81 - 8. are conditioned to different responses. This 
is a limitation but it is offset by the resulting simplicity of the model. 

7. Mathematical Formulation 

From the assumptions presented in the preceding sections, it can be shown 
that the sequence of random variables that take the subject states as values 
is a Markov chain.1 This means, among other things, that a transition 
matrix P = [Pt1] may be defined, where PtJ is the conditional probability of 
being in subject state j on trial n + 1, given state i on trial n. Information 
about subject states on trials preceding n in no way affects Pt1 on trial n; 
further, Pu is independent of n, that is, constant over trials. The learning 
process is completely characterized by these transition probabilities and the 
initial probability distribution on the subject states. 

We now use the axioms of the preceding section to derive the transition 
matrix. In making such a derivation it is convenient to represent the vari· 
ous possible occurrences on a trial by a tree. Each set of branches emanat· 
ing from a point represents a mutually exclusive and exhaustive set of pos· 
sibilities. Two of the sixteen trees are presented in Figures 1 and 2 to il­
lustrate the procedure. 

Each path on a tree from a beginning point to a terminal point represents 
a possible change in subject state on a given trial. The probability of each 
path is obtained by multiplication of conditional probabilities. Thus, for 
Figure 1 the probability of the top path is simply na. The probability of 
a transition from one state to another is obtained by summing over appro­
priate branches. For example, of the sixteen paths in Figure 1, two of 
them lead from state 4 to state 2 and, therefore, P4,2 = na + r.a. As a 
second example, in Figure 2 only one path leads from state 12 to state 2 
and, consequently, P12,2 = r3(1- w1)a. The complete set of transition proba­
bilities for Case III is given in the Appendix. 

Let Ui(n) be the probability of being in subject state i at the start of 
trial n, where n = 1, 2, · · · . Define the row matrix 

(7) U (n) = [u1(n), u.(n), · · ·, u16(n)] . 

Then U(n) = U(n- 1) · P, and, in general, 

1 For more complex stimulus and reinforcement schedules or for conditioning assump· 
tions other than those proposed in Cases I-III, the particular sequence of Subject states 
may not be a Markov chain. 
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(8) U(n) = U(1) · pn-l . 

Further, define Plj> as the probability of being in state j. at trial r + n, 
given that at trial r we were in state i. Moreover, if the appropriate limit 
exists and is independent of i, let 

(9) UJ = lim Pin> . 
n-oo J 

The limiting quantities u1 exist for any finite-state Markov chain that IS Ir­
reducible and aperiodic. A Markov chain is irreducible if there is no closed 
proper subset of states, that is, no proper subset of states such that once 
within this set the probability of leaving it is 0. A Markov chain is aperi­
odic if there is no fixed period for return to any state. 

Experimentally, it is impossible to identify individual states of the process 
on a given trial. That is, the experimenter knows which stimulus (51 or 52), 
response CA1 or A2), and reinforcing event (E1 or E2) occurred on the trial, 
but this information is not sufficient to identify the subject state. For ex­
ample, if 51 is presented and A1 occurs, we cannot establish unequivocally 
which of the sixteen states the subject was in when the A1 occurred. In 
fact, for this particular combination, any one of the following ten states 
would have been possible: 1, 2, 3, 4, 9, 10, 11, 12, 13, or 14. Obviously, this 
confounding is due to the fact that the perceptual states are not directly 
observable. 

Since trial descriptions and subject states cannot be placed in one-to-one 
correspondence, it is necessary (for an experimental evaluation of the theory) 
to define probabilities of events that are observable. Consequently, the fol­
lowing quantities are of particular interest: PnCA1I 51), the conditional proba­
bility on trial n of an A1 response given an 51 stimulus presentation; and 
Pn(AII 52), the conditional probability on trial n of an A1 response given an 
52 stimulus presentation. By inspection of the theoretical states it follows 
that 
(10) PnCA1 I 51) = u1(n) + u2(n) + ua(n) + U4(n) + U9(n) + u10(n) 

+ uh[Un(n) + u12(n)) + (1 - uh)[u13(n) + uu(n)] 

and 

(11) Pn(AI I 52) = u1(n) + ua(n) + Uo(n) + u1(n) + u9(n) + U1a(n) 

+ w2[un(n) + U1o(n)) + (1 - w2)[uro(n) + uu(n)] . 

Also, for analytical purposes, the probabilities at the start of trial n of 
perceptual state P will be useful: 

(12) Pn(P) = u1(n) + u2(n) + · · · + Us(n) . 

ANALYSIS OF THE MODEL 

8. Empirical Implications of Case I 

In this case changes in the conditioning and perceptual states are com­
pletely dependent on each other, as indicated by (4). If, on trial n, a change 
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in the conditioning state is possible, then a change in the perceptual state 
also can occur; if a change is not possible in the conditioning state, then no 
change can occur in the perceptual state. 

An inspection of the transition matrix for this case leads to two immediate 
conclusions: (i) the subject states 3, 6, 11, and 14 are transient; (ii) the asymp­
totic probability of any subject state is independent of 0. This follows 
from the observation that the main diagonal of P for this case has terms 
of the form (1- 0) + oa, while all other non-zero terms are of the form (JiJ'. 

Asymptotic Predictions 

We now consider some general aspects of asymptotic behavior that are of 
experimental interest. If 0 < uJI < 1 and 0 ~ w2 < 1, then a single closed set 
of states exists,2 namely cl = {2, 4, 5, 7, 9, 16}; cl forms an irreducible aperi­
odic Markov chain, and it can be shown that 

(13) 

u2 = ad(a +b)/A , 

u, = ad(c + d)/A , 

Us = bc(c + d)/A , 

where A = (a + b)(c + d) . 

Further, by (10)-(12) we have 

U7 = bc(a + b)/A, 

U9 = ac/A, 

U1a = bd/A , 

(14) Poo(Al I Sl) = u2 + u4 + u9 = 7r!, Poo(Al I S2) = Us + lt7 + u9 = 7r2, 

ad+ be Poo(P) = u2 + U4 + Us + u7 = A . 

The only other admissible condition not considered above is when w
1 

= 
w2 = 1. In this event, two closed sets of states exist, namely C1 and C2 = 
{1, 8, 10, 12, 13, 15}. If the subject is not in cl or c2 at the start of the ex­
periment, then (i) the subject will be absorbed into cl if he was initially 
in state 11 or 14, and (ii) the subject will be absorbed into C2 if he was in­
itially in state 3 or 6. Thus when w1 = w2 = 1 the probabilities of absorp­
tion into C1. and C2 are, respectively: 

(15) 

and 

(16) U!(1) + U3(1) + lta(1) + Us(1) + U!o(1) + ul2(1) + U13(1) + U15 (1) . 

C2 also forms an irreducible aperiodic Markov chain, and if the subject is 
absorbed into the c2 set, then 

U1 =ad/A, 

(17) Us= bd/A, 

U10 = ad(a + b)/A, 

Further, when absorbed into C2, 

u12 = ad(c +d)/A , 

U13 = bc(c + d)/A , 

U1s = bc(a + b)/A . 

2 A set C of states is closed if no state outside C can be reached from any state in C. 
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P~(Ar I 5r) = Ur + Uro + U12 = 7rr, P~(Ar I 52) = Ur + Uta + ul5 = 7rz • 

ac + bd 
P~(P) = U1 + Us = J . 

Thus for Case I, P~(At I 51) is independent of 0, wr, w2, and the initial prob­
ability distribution U(1), as indicated by (14) and (18). The same conclusion 
holds for P~(P) except for the case where wr = w2 = 1; here, 

(19) 
p (P) = {(ab + bc)/.d, with probability indicated by (15) , 
~ (ac + bd)/.d, with probability indicated by (16) . 

Thus, when wr = w2 = 1, the asymptotic probability P~(P) depends on U(1). 
The asymptotic results for P~(At I 51) correspond to the "matching law" 

described by W. K. Estes for a linear learning model [5]. That is, asymptoti­
cally the probability of a response in the presence of a given stimulus is 
simply the probability of reinforcing that response when the stimulus is 
presented. That is, the probability of an Er event given 5r is rrr, which is 
P~(Arl 5r); similarly, the probability of an Er given 52 is rr2, which is 
P~CA1I 52). Experimental evidence dealing with this result will be presented 
later. 

Pre-asymptotic Predictions 

Certain pre-asymptotic properties of the model for a classical discrimina­
tion task will be investigated, that is, for a situation in which a = d = 1/2 
and b = c = 0. For this problem Ar is correct when 5r is presented and A2 
is correct when s2 is presented. 

Under these conditions the process is absorbed in a closed set consisting 
of states 2 and 4. Consequently, 

(20) P~(Ar I Sr) = P-CA2I 52) = P~(P) = 1 . 

To simplify the analysis, assume that Wt = w2 = w and Ut(1) = 1/16 (i = 
1, 2, · · ·, 16). Both of these assumptions are reasonable for many experi­
mental applications. The two stimuli are taken to be comparable by the 
first condition and no initial response bias is posited by the second condi­
tion. 

Given these restrictions, it is obvious that Pn(Ar I 5r) = PnCA2I 52) for all n. 
Further, it can be shown that 

(21) 

ua(n) = u,(n) = u6(n) = uin) = uu(n) 
1 = Ura(n) = Uu(n) = Urs(n) = 16(1- O)n-I , 

1 3 
ur(n) = u8(n) = u9(n) = Ur6(n) = 4(1- 0/2)n-I-

16
(1- O)n-r, 

1 1 
Uro(n) = U12(n) = -t;;-Cl1 - 0(1 - w)/2]n-I - (1 - 0/2]n-I} + 16(1 - O)n-r, 

u2(n) = u4(n) . 

By (21) and the fact that 2:ut(n) = 1, it follows that 
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(22) 1-w 3w-1 
Pn(All S1) = 1- --[1- 0(1- w)/2]n-l- [1- 0/2Jn-l. 

4w 4w 

Equation (22) also describes the probability of a correct response, defined 
here as 

An inspection of (22) indicates that the rate of approach to the asymptote 
is a function of both 8 and w. To investigate the effect of w on condition­
ing, let 8 remain fixed and consider two discrimination problems, one de­
scribed by w' and the other by w, where w' > w. Further, for fixed 8, define 
p~(C) and Pn(C) in terms of w' and w, respectively. 

By inspection of (22) it is clear that on early trials p~(C) will be greater 
than Pn(C). However, at some trial a crossover occurs, and from this point 
on p,(C) is greater than p~(C) as they both approach unity. Further, for 
a fixed value of w, the crossover point occurs later in the series of trials 
as w' increases. The prediction of an increase in the number of errors 
on early trials with an increase in similarity of the discriminanda is 
reasonably well-established experimentally. With regard to the crossover 
effect we know of no conclusive experimental evidence; however, some 
recent data of LaBerge and Smith [13] suggest that such a phenomenon may 
occur. 

The proof of the above result depends on a rather surprising observation. 
Define EN as the expected number of incorrect responses made by a subject 
over the first N trials of the experiment. Then 

N 3 1 3w-1 
EN= ,L. [1- p,(C)] =-- -[1- 8(1- w)/2]N- [1- 8/2]N. 

"- 1 28 2w8 2w8 

As the number of trials becomes large, 

N 3 EN__._. 
28 

Thus we have another interesting experimental prediction for Case I. The 
number of errors made in the "perfect" learning of a classical discrimina­
tion problem is independent of the similarity of the discriminanda. 

9. Empirical Implications of Case II 

In this case, changes in the perceptual and conditioning states are statisti­
cally independent, as indicated by (5). On any trial, a change in the per­
ceptual state may occur with probability a1, while a change in the condi­
tioning state may occur with probability a2. This modification (as compared 
with Case I, in which changes in the perceptual and conditioning states are 
completely dependent) leads to predictions which, for some parameter values, 
are markedly different from those of Case I. 

In analyzing Case II some experimental data will be compared with theo­
retical predictions. However, before inspecting particular experiments, there 
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(i) As in Case I, subject states 3, 6, 11, and 14 are transient. 
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(ii) In general, u, and P~CA1I St) depend on a1, a2, w1, and w2. However, 
as a1 and a2 approach 1, the stationary process is described by (14)-(18) 
and, therefore, by P~(AI I S1) = rr1 and P~(AI I S2) = rr2. 

(iii) We have restricted 0 <at~ 1. However, results relevant to other 
theories of discrimination obtain when a1 = 0 and 0 <a,~ 1. Under these 
conditions, no change can occur in the perceptual state of the subject. If 
initially he is in a P-state, then he will remain in a P-state; the same holds 
for C-states. Consequently, two closed sets are formed, one consisting of 
states 1 through 8 and the other of states 9 through 16. For the former 
closed set, 

u1 = ac/d, Us = bc(c + d)/d , 

(23) 
u2 = ad(a + b)/d , ll6 = 0, 

U3 = 0, u, = bc(a + b)/d , 

Itt = ad(c + d)/d , Us = bd/d . 

If the process is absorbed in this set, by (10) and (11) 

(24) 
P~(AI I Sl) = lll + ll2 + ll3 + lt4 = il"J ' 

p.,(AI IS,) = ll1 + U3 + U5 + u, = n, • 

The ut's for the second closed set, consLting of states 9 through 16, are 
identical to those presented in (23), i.e., Ut = Ut+B· However, for these states 
P~(AI I St) is defined by (10) and (11) as 

(25) 

P~(AI I S1) = ltg + ll1o + w1[Un + zt12] + (1 - WI)[uu + Uu] 

= 7rJW! + (1 - WI)[~7rl + (1 - ~)11:2] , 

P"'(AI I S2) = ltg + ll13 + w2[U12 + u,,] + (1 - w2)[uiO + llu] 

= n2w2 + (1 - w2)[~n1 + (1 - ~)n2l · 

Thus, when a1 = 0, asymptotic behavior is described by (24) or (25), depend· 
ing on the initial state of the subject. It is interesting to note that the re· 
suits of (25) are identical to the asymptotic predictions made by Burke and 
Estes [3]. In contrast, the predictions embodied in (24) are identical to the 
predictions generated by Estes' pattern model [7]. 

(iv) Another general result of interest holds for the case in which w1 = 
w2 = 1. Here, independent of the value of ~. we have P~(AII S1) = 11:1 and 
p"'(AI I S2) = 71:2. 

Classical Discrimination Learning 

When n1 = 1, n2 = 0, and ~ * 0, 1, it is clear, by inspection of the transi· 
tion matrix, that states 2 and 4 form the only closed set and, further, that 
u2 =a and Ut =d. Consequently, 

p,(AII SI) ~ 1, PnCA2IS2) ~ 1. 
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Computational results are presented in Figure 3 for a = d = 1/2, u,(1) = 1/16, 
a1 = a2 = a, and w1 = wz = w. Only Pn(Al I S1) is plotted, since it is equal to 
Pn(Azl Sz) under these conditions. Clearly, the larger the value of a the 
more rapidly the subject approaches perfect responding. Also, as was true 
for Case I, the proportion of correct responses on early trials increases 
with increasing values of w; however, at some trial a crossover occurs and 
from this point on the larger the value of w the greater the number of 
errors. 

Similar computations are provided in Figure 4 for w1 > 0 and wz = 0. 
This would describe a situation in which the presentation of the stimulus 
Sz is theoretically represented by a set of stimulus elements that is a proper 
subset of 81. For example, experimentally S1 might be the onset of a tone and 
a light while Sz is the onset of just the tone. As can be seen from the figure, 
in mastering the problem the subject makes more errors on Sz trials than 
on S1 trials. Stated differently, the subject learns to make the A 1 response 
to S1 more quickly than the Az response to Sz. 

An experiment was conducted to test this specific prediction, employing 
a procedure and apparatus described elsewhere [2]. Facing the subject was 
an array of ten lights; the onset of all ten lights designated an S1 trial and 
the onset of a specific subset of five of these lights designated an S2 trial. 
(The five lights that made up the Sz were randomly selected for each sub­
ject.) On every trial the subject made either an A1 or an Az response; this 
was followed by a signal that told him which response was correct. Sixty 
subjects were run for eighty trials; a= d = 1/2, with the restriction that 
over the eighty trials there were exactly forty S1's and forty S2's. 
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Before the experiment was run, it was decided that the first block of ten 
trials and the last block of seventy trials would be analyzed separately. As 
predicted, over the last block of seventy trials the proportion of A1 responses 
on S1 trials was greater than the proportion of A,'s on S2 trials. A paired 
t test indicated that the result was significant at the .05 level. 

For the first block of ten trials, an additional restriction was placed on 
the random sequence of sl and s2 events such that there were five sl trials 
and five S2 trials. Over the first ten trials the proportion of A1's on S1 
trials was slightly less than the proportion of A2's on S2 trials; however, 
this result did not approach statistical significance. 

The Estes and Burke Study 

The case in which n1 = 1, 1r2 = 1/2, and 8 = 1/2 describes a discrimination 
task investigated by Estes and Burke [8]. There are several aspects to the 
study, but only the acquisition process for the "constant" group will be 
considered. Facing the subject was a circular array of twelve lights, and 
the onset of either the six lights on the left half of the panel or the six on 
the right half was designated an S1 trial; the onset of the other six desig­
nated an S2 trial. On each trial the subject made either an A1 or an A2 
response and was then told which response was correct. 

Figure 5 presents theoretical curves computed for a1 = a2 = .05, Ui(l) = 1/16, 
and w1 = aJ2 = .1, .5, and .9. The functions Pn(AI I S1) and PnCA1 I S2) for 
w = .1 provide a reasonably good fit of the observed data . 

An inspection of the curves in Figure 5 illustrates some theoretical results 
for this special case, namely that the closer p.(Al I S1) is to unity and the 
closer P-CA1 I S2) is to .5, the larger is the value of w. 

Other Studies 

Two studies deal with the case where 1r1 is fixed and n2 varies over ex­
perimental groups. Popper and Atkinson [14] report a study involving five 
groups in which n1 = .85, 8 = .50, and n2 takes on the values .85, .70, .50, 
.30, and .15. A similar study is reported by Atkinson, Bogartz, and Turner 
[2] in which 1r1 = .9 and 1r2 is .9, .7, .5, .3, and .1 for the five groups, 
respectively. The findings of these studies are in agreement. Consequently, 
the discussion will be limited to the latter study. 

The experimental procedure is similar to Estes and Burke [8]. Each trial 
begins with the onset of one of two lights (S1 or S2). The subject makes 
a response CA1 or A2) and is then told which response was correct CE1 or E2). 

Figure 6 presents theoretical curves for P-CA1 I S1) for various values of 
w = w1 = w2 and a = a1 = a2; 1r1 and 8 are fixed at .9 and .5, respectively. 
The abscissa represents different values of n2 and the parameters are w and 
a. As a approaches 1 and also as w approaches 1, P=CA1I S1) approaches 
n1 for all values of 1r2. However, in general, the model predicts a convex 
relation between P-CA1 I S1) and 1r2. This convex relation for the asymptotic 
probability of an A1 response on S1 trials was demonstrated in the Atkinson. 
Bogartz, and Turner study and also in the Popper and Atkinson study. 
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Figure 6 presents another interesting feature of Case II. Here we observe 
that when rr1 = rr. = .9, the probability P®CA1 I S1) is generally greater than 
.9, with maximal differences between .9 and Poo(All S1) for small values of OJ 

and a. This result obtains in general for Case II. That is, if n:1 = n:: = 
n: > 1/2, then P~CA1 I S1) and p®(A1 I S2) are both greater than n: except when 
w = 1 or when a = 1. 

10. Discussion 

An empirical evaluation of the theory is currently in progress. The re­
search involves experimentation with both rats and human subjects. The 
variables being analyzed encompass various stimulus and reinforcement 
schedules and also include procedures designed to manipulate the values of 
w1 and w.. The research with rats is being conducted using two-bar Skin­
ner boxes in which the bars are retractable, thereby permitting a discrete 
trial procedure. The equipment is completely automatic, and the animal's 
response data can be immediately transferred to I.B.M. cards for analysis. 

Concurrently, various procedures for estimating parameters are being ex­
plored. In any application of the model it will be necessary to estimate 
at least two parameters. For example, if the stimuli S1 and S2 are com­
parable, then application of Case I would involve estimating w and fJ. A 
maximum-likelihood method has been worked out for this case and is pro­
grammed at the Western Data Processing Center for the I.B.M. 709 computer. 
An individual subject's response record and sequence of experimental events 
are read into the computer, and values of w and fJ are computed that max­
imize the likelihood of the particular response protocol. Some preliminary 
work indicates that Case I will have very restricted applicability. Conse­
quently, a similar procedure for Case II is being developed that permits the 
simultaneous estimation of w, a1, and a". Other procedures for estima­
tion, including a pseudo maximum-likelihood method suggested by Suppes, 
are also being investigated. 

From a psychological standpoint there is one additional comment to be 
made about applications of the model. This involves a prediction, suggested 
by the work of Wyckoff [20], of the rate of change in perceptual and con­
ditioning states. If the perceptual and conditioning processes are viewed as 
response mechanisms, then we would expect, in terms of a gradient of re­
inforcement [12], that the response temporally closest to the reinforcing 
event should be acquired most rapidly. Thus we might suspect that the 
rate of change in the conditioning states would be greater than in the per­
ceptual states. For situations in which this analysis is correct, Case I is 
definitely not applicable. However, Case II may represent a good approxima­
tion when a1 < a,. More generally, such an analysis would suggest that 
r1 < r• for Case III. 

In conclusion, it appears that the model generates interesting predictions 
regarding both reinforcement schedules and similarity between discriminanda. 
No rigorous attempt has been made to test the theory for the special cases 
considered. Nevertheless, qualitatively it appears that the model accounts 
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for some aspects of traditional types of discrimination learning and can be 
extended without modification to discrimination tasks involving more com­
plex stimulus and reinforcement schedules. 

APPENDIX 

Listed below are the transition probabilities for Case III; only non-zero 
terms are indicated. Interpret Pt.J as the probability of being in state j on 
trial n + 1, given state i on trial n. 

Pl.l = a + c + (b + d)ro 
Pu = dr2 
Pu = br: 
P1.9 = (b + d)n 
PI.n = dn 
PI.I5 =bra 
P2.I = cr2 
P2.2 =a+ (b + c)ro + d(ri + ro) 
Pu = d(n + r2) 
P2.s = Pu 
P:.9 =en 
P:.Io = (b + c)n 
P:.Ia = P1.I• 
Pa.I = (a+ c)(ra + r2) 
Pa.a = (a+ c)(TI + ro) + (b + d)ro 
Pa.f = PI.f 
Pa.1 = Pu 
Pa.n = PI.9 
Pa.I2 = PI.u 
Pa.Io = P:.Ia 
pf,I = P2.I 
Pu = a(n + r2) 
Pu = a(ri + ro) + (b + c)ro + d 
p,,s = PI,7 
p,,9 = P:.9 
Pf.I2 = P:.IO 
Pf.Ie = P:.Ia 
Po.I = ar2 
P•.• =(a+ d)ro + b(ri + ro) + c 
Pu = b(ra + r2) 
P•.s = PI.4 
Po.9 = ara 
Po.Ia = (a + d)n 
Po.Ia = PI.I2 
Po.z = P6.I 
Po.6 = P4.I 
p6.8 = (a + c)ro + (b + d)(TI + ro) 

Po.s = (b + d)(ra + r2) 
Po.IO = Po.9 
Po.Ia = P4.9 
Po.u = (a+ c)ri 
P1.I = P•.I 
Pu = c(ra + r:) 
Pr. 1 = (a + d)ro + b + c(n + ro) 
P1.s = P•.s 
Pr.9 = Po.9 
P1,u = P6.1a 
Pr.1o = Ps.Io 
Ps.: = P1.1 

Ps.o = Po.s 
Ps.s = (a + c)ro + b + d 
Ps.Io = Pe.Io 
Ps.Ia = Pu.Ia 
Ps.Io = Po.u 
PD. I = Pa.n 
P9,4 = Ps.Io 
P9.7 = PI.Is 
PD.9 = a + c + (b + d)ro 
P9.12 = Ps.s 
P9.I6 = PI.7 
PlO.I = CW2T3 

Pio.: = [b + cw2 + d(1- w:)]n 
P1D.4 = d(1 - w2)ra 
Pio.s = PI.B 
P10.D = c[m2r2 + (1 - m2)(ra + r2)] 
P10.Io =a+ bro 

+ c[w2ro + (1 - w:)(ri + ro)] 
+ d[w:(Tl + ro) + (1 - m:)ro] 

P10.u = d[w2Cra + r2) + (1- w2)r:] 
P10.Ia = P9.I5 
Pn.I = [a(1- WI)+ c(1- m:)]ra 
P1,1a = [a(1- WI)+ bwi + c(1- m2) 

+ dw2]TI 

Pn.f = dw:ra 



240 RICHARD C. ATKINSON 

Pn.1 = b(J)Jn 

Pn.9 = a[w1Cra + r.) + (1- w1)r.J 
+ c[w.(ra + r.) + (1-w.)r.] 

Pn.n = a[wl(Tl + ro) + (1- wl)ro] 
+ b[w1ro + (1- w1)Cr1 + ro)] 
+ c[w.(rl + ro) + (1- w.)ro] 
+ d[w.ro + (1 - w.)(rl + ro)] 

Pn.12 = d[w.r. + (1- w.)(ra + r.)] 
Pn.l5 = b[w1r2 + (1- w1)Cra + r.)] 
Pl2,1 = PB.l3 
P12.2 = a(1 - wl)ra 
P12.4 = [a(1 - w1) + bw1 + clr1 
P12.B = Pn.7 
pl2,9 = p4,1 
P12.1o = a[w1Cra + r.) + (1- wl)r.] 
P12.12 = a[(rl + ro)wl + (1- wl)ro] 

+ b[W1T0 + (1 - W1)(71 + To)) 
+ cro + d 

P12.1o = Pn.l5 
P1a.1 = aw1ra 
P1u = [aw1 + b(1 - w1) + d]r1 
P1a. 1 = b(1 - w1)ra 
PH.s = dra 
PH.D = a[w1r2 + (1- w1)Cra + r.)] 
PH.la = a[w1ro + (1 - w1)Cr1 + ro)] 

+ b[wl(TI + ro) + (1 - wl)ro] 
+ c + dro 

PH.l5 = b[w1Cra + r.) + (1 - w1)7•] 
Pl3,16 = P5.B 

Pu.• = P1a.1 
Pu.5 = cw.ra 
Pu.o = [aw1 + b(1 - w1) + cw2 

+ d(1 - w.)]rl 
Pu.s = [b(1 - w1) + d(1 - w.)]ra 
Pu.1o = P1a,9 
Pu.1a = c[w.r. + (1 - w.)(ra + r.)] 
Pu.u = a[w1ro + (1- w1)Cr1 + ro)] 

+ b(wl(Tl + To) + (1 - Wl)To] 
+c[w.ro + (1- w.)(n + ro)] 
+ d[(JJ•(Tl + ro) + (1 - w.)ro] 

Pu.l6 = b(wl(Ta + rz) + (1- wl)r.] 
+ d(w2(7a + 72) + (1 - Wz)T2] 

P1s.1 = Ps.9 
P1s,5 = c(1 - w.)ra 
Pl5. 1 = [a + c(1 - wz) + dw.]rl 
P1s.s = dwzra 
P1s.9 = Ps.l 
pl5,13 = c[w.(ra + r.) + (1 - w.)r.] 
P15.1s = aro +b. 

+ C(w2(71 + To) + (1 - Wz)To] 
+ d[w.ro + (1 - wz)(rl + ro)] 

P1s.16 = Pn.12 
P16.2 = Ps.9 
P1o.s = P2.D 
P1o.s =(a+ c)rl 
P16.10 = Ps.l 
pl6,13 = p6,5 

P16.l6 =(a+ c)ro + b + d 
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